

www.vishay.com

Vishay Semiconductors

High Voltage Phase Control Thyristor, 70 A



PRODUCT SUMMARY					
Package	Super TO-247				
Diode variation	Single SCR				
I _{T(AV)}	70 A				
V _{DRM} /V _{RRM}	1200 V, 1600 V				
V _{TM}	1.4 V				
I _{GT}	100 mA				
T _J	- 40 °C to 125 °C				

FEATURES

- High surge capability
- High voltage input rectification

APPLICATIONS

- AC switches
- · High voltage input rectification (soft start)
- High current crow-bar
- · Other phase-control circuits
- Designed to be used with Vishay input diodes, switches, and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-70TPS..PbF High Voltage Series of silicon controlled rectifiers are specifically designed for high and medium power switching, and phase control applications.

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
I _{T(AV)}	Sinusoidal waveform	70	Α			
I _{RMS}	Lead current limitation	75	A			
V _{RRM} /V _{DRM}	Range	1200/1600	V			
I _{TSM}		1400	А			
V _T	100 A, T _J = 25 °C	1.4	V			
dV/dt		500	V/µs			
dl/dt		150	A/μs			
T _J		- 40 to 125	°C			

VOLTAGE RATINGS			
PART NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA
VS-70TPS12PbF	1200	1300	15
VS-70TPS16PbF	1600	1700	15

www.vishay.com

Vishay Semiconductors

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current	I _{T(AV)}	T _C = 82 °C, 180° co	T _C = 82 °C, 180° conduction half sine wave			
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}	Lead current limitat	Lead current limitation		75	Α
Maximum peak, one-cycle	L	10 ms sine pulse, ra	ated V _{RRM} applied		1200	
non-repetitive surge current	I _{TSM}	10 ms sine pulse, n	o voltage reapplied		1400	
Maximum I ² t for fusing	l ² t	10 ms sine pulse, ra	ated V _{RRM} applied	Initial $T_J = T_J$ maximum	7200	A ² s
Maximum i-t for fusing	I-ί	10 ms sine pulse, n	10 ms sine pulse, no voltage reapplied		10 200	A-S
Maximum $I^2\sqrt{t}$ for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied			102 000	A²√s
Low level value of threshold voltage	V _{T(TO)1}			0.916	V	
High level value of threshold voltage	V _{T(TO)2}	T. = 105 °C		1.21	V	
Low level value of on-state slope resistance	r _{t1}	T _J = 125 °C			4.138	C
High level value of on-state slope resistance	r _{t2}		3.43	mΩ		
Maximum peak on-state voltage	V_{TM}	100 A, T _J = 25 °C			1.4	V
Maximum rate of rise of turned-on current	dl/dt	T _J = 25 °C			150	A/µs
Maximum holding current	I _H	T 05.00		200		
Maximum latching current	ΙL	T _J = 25 °C		400	A	
	I _{RRM} /I _{DRM}	T _J = 25 °C			1.0	mA
Maximum reverse and direct leakage current		T _J = 125 °C	V _R = Rated V _{RRM} /V _E	15		
Maximum rate of rise of off-state voltage	dV/dt	T _{.1} = 125 °C	= 125 °C		500	V/µs

TRIGGERING					
PARAMETER	SYMBOL		TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}	T = 30 µs		10	W
Maximum average gate power	P _{G(AV)}	1 = 30 μs		2.5	VV
Maximum peak gate current	I _{GM}			2.5	Α
Maximum peak negative gate voltage	- V _{GM}			10	
Maximum required DC gate voltage to trigger	V _{GT}	T _J = - 40 °C		1.8	V
		T _J = 25 °C	Anode supply = 6 V resistive load	1.5	
		T _J = 125 °C		1.1	
		T _J = - 40 °C		150	
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C		100	mA
		T _J = 125 °C		80	
Maximum DC gate voltage not to trigger	V_{GD}	T 405 00 V Bullet all a		0.25	V
Maximum DC gate current not to trigger	I _{GD}	T _J = 125 °C, V _{DRM} = Rated value		6	mA

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction temperature range		TJ		- 40 to 125	°C	
Maximum storage temperature	range	T _{Stg}		- 40 to 150		
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	0.27		
Maximum thermal resistance, junction to ambient		R_{thJA}		40	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2		
Approximate weight				6	g	
Approximate weight	proximate weight			0.21	oz.	
Mounting toward	minimum			6 (5)	kgf · cm	
Mounting torque	maximum			12 (10)	(lbf · in)	
Marking device			Coop atula Super TO 247	70TPS12		
			Case style Super TO-247	70TPS16		

△R _{thJ-hs} CONDUCTION PER JUNCTION											
DEVICE	s	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION				UNITS
DEVICE	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VS-70TPSPbF	0.078	0.092	0.117	0.172	0.302	0.053	0.092	0.125	0.180	0.306	°C/W

Note

The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

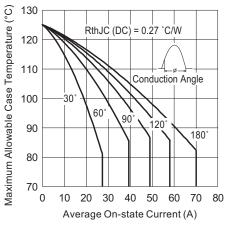


Fig. 1 - Current Rating Characteristics

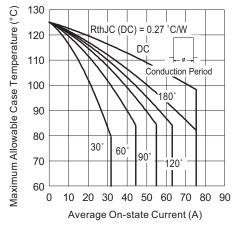


Fig. 2 - Current Rating Characteristics

www.vishay.com

Vishay Semiconductors

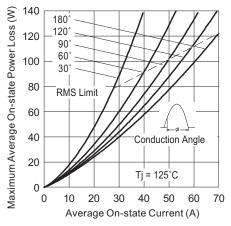


Fig. 3 - On-State Power Loss Characteristics

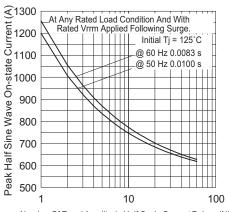



Fig. 4 - On-State Power Loss Characteristics

Number Of Equal Amplitude Half Cycle Current Pulses (N) Fig. 5 - Maximum Non-Repetitive Surge Current

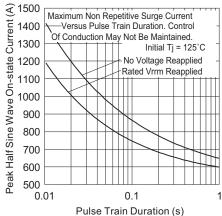


Fig. 6 - Maximum Non-Repetitive Surge Current

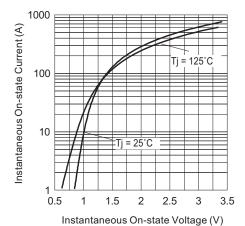
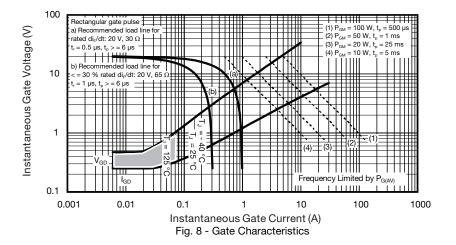
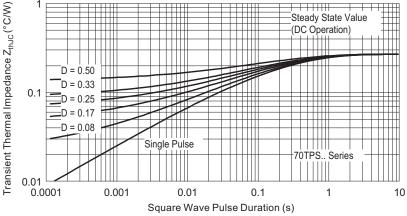
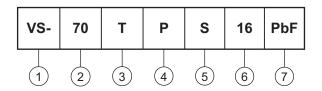



Fig. 7 - On-State Voltage Drop Characteristics

www.vishay.com

Vishay Semiconductors




Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

www.vishay.com

1 - Vishay Semiconductors product

2 - Current rating (70 = 70 A)

3 - Circuit configuration:

T = Thyristor

4 - Package:

P = Super TO-247

5 - Type of silicon:

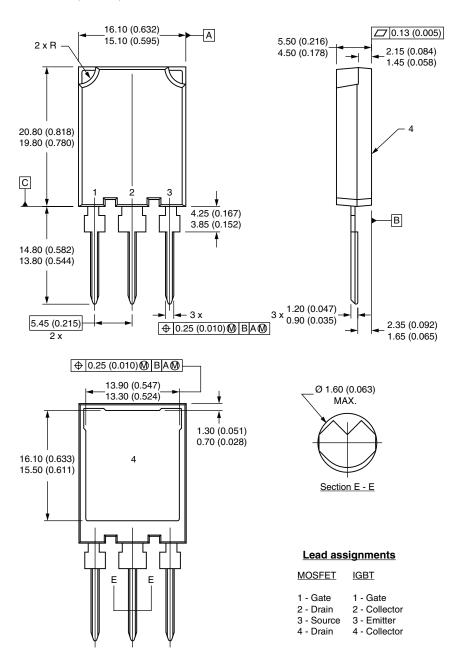
S = Standard recovery rectifier

6 - Voltage code x 100 = V_{RRM} —

12 = 1200 V 16 = 1600 V

7 - PbF = Lead (Pb)-free

ORDERING INFORMATION (example)							
PREFERED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-70TPS12PbF	25	500	Antistatic plastic tube				
VS-70TPS16PbF	25	500	Antistatic plastic tube				


LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95073</u>					
Part marking information	www.vishay.com/doc?95070				

Vishay High Power Products

Super TO-247

DIMENSIONS in millimeters (inches)

Notes

- (1) Dimension and tolerancing per ASME Y14.5M-1994
- (2) Controlling dimension: millimeter
- (3) Outline conforms to JEDEC outline TO-274AA

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.